Лекция: Нарушения биосинтеза и распада белков в организме и тканях. Нарушения биосинтеза белка. Их последствия Нарушения синтеза белка в микробах

Синтез белков происходит в организме непрерывно на протяжении всей жизни, но наиболее интенсивно совершается в период внутриутробного развития, в детском и юношеском возрасте.

Различают следующие виды синтеза белка в зависимости от его назначения:

регенерационный -связан с процессами физиологической и репаративной регенерации;

синтез роста -сопровождается увеличением массы и размеров тела;

стабилизирующий -связан с возмещением структурных белков, утраченных в процессе диссимиляции, способствует поддержанию структурной целостности организма;

функциональный -связан со специфической деятельностью различных органов (синтез гемоглобина, белков плазмы крови, антител, гормонов и ферментов).

Причины нарушения синтеза белка:

Отсутствие достаточного количества аминокислот;

Дефицит энергии в клетках;

Расстройства нейроэндокринной регуляции;

Нарушение процессов транскрипции или трансляции информации о структуре того или иного белка, закодированной в геноме клетки.

Наиболее частой причиной нарушения синтеза белка является недостаток аминокислот в организме вследствие:

1) расстройств пищеварения и всасывания;

2) пониженного содержания белка в пище;

3) питания неполноценными белками, в которых отсутствуют или имеются в незначительном количестве незаменимые аминокислоты, не синтезирующиеся в организме.

Полный набор незаменимых аминокислот имеется в большинстве белков животного происхождения, тогда как растительные белки могут не содержать некоторые из них или содержат недостаточно (в белках кукурузы мало триптофана). Недостаток в организме хотя бы одной из незаменимых аминокислот (табл. 1) ведет к снижению синтеза того или иного белка даже при изобилии остальных.

Таблица 1. Проявления дефицита незаменимых аминокислот.

Гистидин

Дерматит, анемия, снижение продукции гистамина, ухудшение умственной деятельности

Изолейцин

Поражение почек, щитовидной железы, анемия, гипопротеинемия

Поражение почек, щитовидной железы, гипопротеинемия

Метионин (с цистеином)

Ожирение, некрозы печени, ускорение атерогенеза, надпочечниковая недостаточность, геморрагии почек, дефицит холина и адреналина

Анемия, миодистрофия, остеопороз, поражение печени и легких, головная боль, повышенная чувствительность к шуму

Фенилаланин с тирозином

Гипотиреоз, недостаточность мозгового вещества надпочечников

Нарушение сперматогенеза, цикла мочевины

Триптофан

Пеллагра, катаракта, помутнение роговицы, анемия, облысение, гипопротеинемия, атрофия семенников, рассасывание плода

Расстройство координации движений и гиперстезии

Отеки и падение массы тела

Дефицит заменимых аминокислот в пище реже приводит к понижению синтеза белка, так как они могут образовываться в организме из кетокислот, являющихся продуктами метаболизма углеводов, жиров и белков.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство здравоохранения Калужской области

ГАОУ КО СПО «Калужский базовый медицинский колледж»

Реферат на тему:

Нарушения биосинтеза белка. Их последствия.

Студентки группы: Фц021

Просяновой Ольги

Преподаватель: Сафонова В.М.

Калуга 2014

белок ингибитор аминокислота яд

4. Дефицит АТФ

6. Генные мутации

1. Нарушения структуры генов, кодирующих информацию о строении белков (мутации)

Точная работа всех матричных биосинтезов - репликации, транскрипции и трансляции - обеспечивает копирование генома и воспроизведение фенотипических характеристик организма в поколениях, т.е. наследственности. Однако биологическая эволюция и естественный отбор возможны только при наличии генетической изменчивости. Установлено, что геном постоянно претерпевает разнообразные изменения. Несмотря на эффективность механизмов коррекции и репарации ДНК, часть повреждений или ошибок в ДНК остаётся. Изменения в последовательности пуриновых или пиримидиновых оснований в гене, не исправленные ферментами репарации, получили название"мутации". Одни из них остаются в соматических клетках, в которых они возникли, а другие обнаруживаются в половых клетках, передаются по наследству и могут проявляться в фенотипе потомства как наследственная болезнь.

Ген или части генов могут перемещаться из одного места хромосомы в другие. Эти подвижные элементы или фрагменты ДНК получили название транспозонов и ретротранспозонов.

Транспозоны- участки ДНК, удаляемые из одного локуса хромосомы и встраиваемые в другой локус той же или другой хромосомы. Ретротранспозоны не покидают исходного положения в молекуле ДНК, но могут копироваться, и копии встраиваются, подобно транспозонам, в новый участок. Включаясь в гены или участки около генов, они могут вызывать мутации и изменять их экспрессию.

Геном эукариотов подвергается изменениям и при заражении ДНК- или РНК-содержащими вирусами, которые внедряют свой генетический материал в ДНК клеток хозяина.

2. Яды и специфические ингибиторы мультиферментных комплексов, обеспечивающих процессы транскрипции, трансляции и посттрансляционной модификации белков

Ингибиторами биосинтеза белков могут быть различные вещества, в том числе антибиотики, токсины, алкалоиды, антиметаболиты (аналоги) структурных единиц нуклеиновых кислот и др. Они широко используются в биохимических исследованиях инструменты для раскрытия механизма отдельных этапов биосинтеза белков, поскольку оказалось, что среди них можно подобрать такие, которые избирательно тормозят специфические фазы белкового синтеза. Антибиотики - вещества, синтезируемые микроорганизмами, плесенью, грибами, высшими растениями, тканями животных в процессе их жизнедеятельности, а также полученные синтетическим путем. Им свойственна бактериостатическое или бактерицидное действие. Антибиотики, которые взаимодействуют с ДНК, нарушают ее матричные функции и подавляют репликацию или транскрипцию, или оба эти процессы. Противоопухолевые антибиотики практически одинаково взаимодействуют с ДНК как опухолевых, так и нормальных клеток, поскольку они не отличаются избирательностью действия.

3. Дефицит незаменимых аминокислот

Аминокислоты-- органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Отсутствие или недостаток в продуктах питания одной или нескольких незаменимых аминокислот негативно влияет на общее состояние организма, вызывает негативный азотистый баланс, нарушения синтеза белков, процессов роста и развития. У детей может возникнуть тяжелое заболевание - квашиокор .

Незаменимые аминокислоты применяют для обогащения кормов сельскохозяйственных животных с целью повышении я их продуктивности, а также в виде лекарственных препаратов. Осуществляется промышленный синтез некоторых незаменимых аминокислот - лизина, метионина, триптофана. Незаменимые аминокислоты поступают в организм человека вместе с продуктами питания растительного происхождения. В растениях осуществляется синтез более 200 разных аминокислот.

Белки играют важную роль в организме человека. Они выполняют следующие функции:

1) каталитическая

2) структурная

3) защитная

4) регуляторная

5) транспортная

Валин способен к гидрофобным взаимодействиям, принимает участие в стабилизации третичной структуры белков. Валин используется при синтезе алкалоидов, пантотеновой кислоты, ряда циклопептидов. Суточная потребность в валине составляет 1,3-3,8 г. Значительное количество валина содержится в миоглобине, казеине, эластине.

По химическим свойствам лейцин является типичной альфа-аминокислотой алифатического ряда. Лейцин входит в состав растительных и животных белков.Новые исследования указывают на то, что потребление высококачественного белка повышает уровень лейцина, аминокислоты, которая помогает человеку поддерживать объем мышечной массы и уменьшает содержание жира в организме, способствуя похудению.

Незаменимые аминокислоты - аминокислоты, которые не синтезируются в организме человека и должны обязательно поступать в организм с продуктами питания.

Восемь из 20 аминокислот являются незаменимыми:

изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин.

При декарбоксилировании триптофана образуется триптамин, который повышает артериальное давление крови. Нарушение обмена триптофана приводит к недоумию, а также является показателем таких заболеваний, как туберкулез, рак, сахарный диабет.

Недостаток метионина в продуктах питания приводит к задержке роста, нарушению процесса синтеза белков и многих биологически активных соединений. Метионин содержится во многих продуктах питания (в молоке, в частности, в молочном белке - казеине).

4. Дефицит АТФ

Основным источником энергии для клетки являются питательные вещества: углеводы, жиры и белки, которые окисляются с помощью кислорода. Практически все углеводы, прежде чем достичь клеток организма, благодаря работе желудочно-кишечного тракта и печени превращаются в глюкозу. Наряду с углеводами расщепляются также белки -- до аминокислот и липиды -- до жирных кислот. В клетке питательные вещества окисляются под действием кислорода и при участии ферментов, контролирующих реакции высвобождения энергии и ее утилизацию. Почти все окислительные реакции происходят в митохондриях, а высвобождаемая энергия запасается в виде макроэргического соединения -- АТФ. В дальнейшем для обеспечения внутриклеточных метаболических процессов энергией используется именно АТФ, а не питательные вещества. При высвобождении энергии АТФ отдает фосфатную группу и превращается в аденозиндифосфат. Выделившаяся энергия используется практически для всех клеточных процессов, например в реакциях биосинтеза и при мышечном сокращении. Восполнение запасов АТФ происходит путем воссоединения АДФ с остатком фосфорной кислоты за счет энергии питательных веществ. Этот процесс повторяется вновь и вновь. АТФ постоянно расходуется и накапливается, поэтому она получила название энергетической валюты клетки.

5. Нарушения образования транспортных и рибосомальной РНК, белков рибосом

Для осуществления синтеза нуклеиновых кислот необходимо присутствие в клетках достаточного количества пуриновых и пиримидиновых оснований, рибозы и дезоксирибозы, а также макроэргических фосфорных соединений. Материалом для синтеза пуриновых и пиримидиновых оснований являются одноуглеродные фрагменты некоторых аминокислот и их производных (аспарагиновая кислота, глицин, серин, глутамин), а также аммиак и С0 2 . Рибоза образуется из глюкозы в пентозном цикле, в дальнейшем она может превращаться в дезоксирибозу.

Наиболее выраженные нарушения синтеза ДНК имеют место при дефиците фолиевой кислоты и витамина В 12 .

При дефиците фолиевой кислоты нарушается использование одноуглеродных фрагментов аминокислот для синтеза пуриновых и пиримидиновых оснований.

Витамин В 12 необходим для образования некоторых коферментных форм фолиевой кислоты, при дефиците которых нарушается превращение диоксиуридинмонофосфата в дезокситимидилат. В результате нарушается синтез тимидина, что лимитирует образование новых молекул ДНК. Синтез РНК при дефиците витамина В 12 и фолиевой кислоты не нарушается. Пониженное образование ДНК тормозит вступление клеток в митоз вследствие удлинения синтетической фазы митотического цикла. Задержка митозов ведет к замедлению клеточных делений, в результате тормозится процесс физиологической регенерации в костном мозге и в других быстро обновляющихся тканях. Задержка митозов сопровождается увеличением размеров клеток, что, по-видимому, связано с удлинением интерфазы. Наиболее демонстративно эти изменения выражены в кроветворной ткани костного мозга: появляются гигантские эритробласты - мегалобласты, при созревании их образуются эритроциты больших размеров - мегалоциты. Обнаруживаются также увеличенные в размерах миелоциты, метамиелоциты и более зрелые гранулоциты. Гигантские клетки появляются и в других тканях: слизистой языка, желудка и кишечника, влагалища. Вследствие замедления процессов регенерации развиваются тяжелая форма малокровия (пернициозная анемия), лейкопения и тромбоцитопения, атрофические изменения в слизистой пищеварительного тракта.

Дефицит витамина В 12 у человека возникает при длительной вегетарианской диете, при нарушении его всасывания в кишечнике в связи с прекращением продукции внутреннего фактора Касла в желудке, при атрофии его слизистой в результате повреждения аутоантителами. Другими причинами развития гиповитаминоза В могут быть: гастрэктомия, инвазия широким лентецом, хроническое воспаление подвздошной кишки, отсутствие в слизистой кишечника специфических рецепторов, с которыми взаимодействует комплекс внутреннего фактора с витамином В12.

Дефицит фолиевой кислоты возникает при длительном отсутствии в пище зеленых овощей и животных белков, у детей раннего возраста при вскармливании одним молоком (в нем содержание фолиевой кислоты незначительно). Эндогенный дефицит фолиевой кислоты может развиться при нарушении всасывания ее в кишечнике (заболевание спру), нарушении депонирования (заболевания печени), повышенном расходовании (беременность, в случае если исходные запасы витамина были понижены), при длительном лечении некоторыми лекарственными препаратами (сульфаниламиды), при алкоголизме.

Они сопровождаются нарушением трансляции с образованием полипептидных цепочек в цитозоле, гр. ЭПС и митохондриях. Эти нарушения возникают при влиянии некоторых патологических факторов, например противоопухолевых препаратов, блокирующих синтез белков у эукариот. Изменения рибонуклеопротеидных комплексов рибосом, а также рецепторов к ним могут сопровождаться снижением связывания рибосом и полисом с гр. ЭПС в ходе образования секреторных белков. Такие вновь образованные полипептидные цепочки быстро разрушаются в матриксе цитоплазмы. Патология ядрышкового аппарата приводит к снижению содержания рибосом в цитоплазме и подавлению пластических процессов в организме. Некоторые особенности имеет патология митохондриальных рибосом. Их нарушения вызывают препараты, блокирующие белковый синтез у бактерий, например левомицетин, эритромицин, которые не влияют на активность цитоплазматических рибосом. Последствием нарушения Биосинтеза белка являются Генные мутации.

6. Генные мутации

Генные мутации - это мутации, в результате которых изменяются отдельные гены и появляются новые аллели. Генные мутации связаны с изменениями, происходящими внутри данного гена и затрагивающими его часть. Обычно это замена азотистых оснований в ДНК, вставка лишних пар или выпадение пары оснований.

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер. Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой -- делеция.

Связь мутаций с репарацией ДНК

Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах, кодирующих белки, ответственные за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов. Мутации могут появляться не только при репликации, но и при репарации -- эксцизионной репарации или при пострепликативной (пример: серповидноклеточная анемия).

Литература

1. Общая биология.А.О.Рувинский; Под ред.А.О. Рувинского. М.: Просвещение, 1993. 544 с.

2. Биология в экзаменационных вопросах и ответах/Под. Общ.ред. Н.А.Лемезы. 2-е изд. Мн.: БелЭн, 1997. 464 с.

3. http://www.xumuk.ru/biologhim/233.html.

4. http://znanija.com/task/1150180.

5. http://www.eurolab.ua/symptoms/disorders/162/.

Размещено на Allbest.ru

...

Подобные документы

    Общие закономерности постсинтетической модификации белков. Процессы ковалентной модификации на уровне аминокислотных радикалов. Процессы, не включающие образование дериватов аминокислот. Посттрансляционное карбоксилирование остатков глутаминовой кислоты.

    реферат , добавлен 10.12.2011

    Регуляция метаболизма как управление скоростью биохимических процессов. Регуляция биосинтеза белков и особенности процесса репликации. Транскрипция генетической информации, механизм катаболитной репрессии, регуляция на этапе терминации транскрипции.

    контрольная работа , добавлен 26.07.2009

    Положения биологической гипотезы Жакоба-Мано. Роль генов-регуляторов в синтезе белков. Особенности протекания первого этапа этого процесса – транскрипции. Трансляция как следующая ступень их биосинтеза. Основы ферментативной регуляции этих процессов.

    презентация , добавлен 01.11.2015

    Регуляция на этапе биосинтеза и сборки компонентов аппарата трансляции и на этапе его функционирования. Регуляция круговорота белков путем избирательного протеолиза. Регуляция активности белковых посредников нековалентным взаимодействием с эффекторами.

    реферат , добавлен 26.07.2009

    История открытия и изучения белков. Строение молекулы белка, ее пространственная организация и свойства, роль в строении и жизнеобеспечении клетки. Совокупность реакций биологического синтеза. Всасывание аминокислот. Влияние кортизола на обмен белка.

    контрольная работа , добавлен 28.04.2014

    Использование незаменимых аминокислот, зависимость биологического и химического состава белков от их аминокислотного состава. Суточная норма потребления белка. Роль магния и калия для сердца. Собственное, симбионтное и аутолитическое типы пищеварения.

    контрольная работа , добавлен 29.12.2009

    Белки (протеины) – высоко молекулярные, азотосодержащие природные органические вещества, молекулы которых построены из аминокислот. Строение белков. Классификация белков. Физико-химические свойства белков. Биологические функции белков. Фермент.

    реферат , добавлен 15.05.2007

    Электрофоретическая подвижность белка, влияющие факторов и условия электрофореза. Сущность метода полного разделения сложной смеси белков. Извлечение белков из геля после электрофореза. Гели агарозы и их применения. Влияние вторичной структуры ДНК.

    реферат , добавлен 11.12.2009

    Проблемы сборки мембранных белков, методы исследования и условия переноса белков через мембраны. Сигнальная и мембранная (триггерная) гипотеза встраивания белков в мембрану. Процесс сборки мультисубъединичных комплексов и обновление мембранных белков.

    курсовая работа , добавлен 13.04.2009

    Типовые нарушения белкового обмена. Несоответствие поступления белка потреблению. Нарушение расщепления белка в ЖКТ и содержания белка в плазме крови. Расстройство конечных этапов катаболизма белка и метаболизма аминокислот. Нарушения липидного обмена.

Министерство здравоохранения Калужской области
ГАОУ КО СПО «Калужский базовый медицинский колледж»

Реферат на тему:
Нарушения биосинтеза белка. Их последствия.

Студентки группы: Фц021
Просяновой Ольги
Преподаватель: Сафонова В.М.

Калуга 2014

План
белок ингибитор аминокислота яд

2. Яды испецифические ингибиторы мультиферментных комплексов, обеспечивающих процессы транскрипции, трансляции и посттрансляционной модификации белков

4. Дефицит АТФ
5. Нарушения образования транспортных и рибосомальной РНК, белков рибосом
6. Генные мутации

1. Нарушения структуры генов, кодирующих информацию о строении белков (мутации)

Точная работа всех матричных биосинтезов -репликации, транскрипции и трансляции - обеспечивает копирование генома и воспроизведение фенотипических характеристик организма в поколениях, т.е. наследственности. Однако биологическая эволюция и естественный отбор возможны только при наличии генетической изменчивости. Установлено, что геном постоянно претерпевает разнообразные изменения. Несмотря на эффективность механизмов коррекции и репарацииДНК, часть повреждений или ошибок в ДНК остаётся. Изменения в последовательности пуриновых или пиримидиновых оснований в гене, не исправленные ферментами репарации, получили название"мутации". Одни из них остаются в соматических клетках, в которых они возникли, а другие обнаруживаются в половых клетках, передаются по наследству и могут проявляться в фенотипе потомства как наследственная болезнь.
Генили части генов могут перемещаться из одного места хромосомы в другие. Эти подвижные элементы или фрагменты ДНК получили название транспозонов и ретротранспозонов.
Транспозоны - участки ДНК, удаляемые из одного локуса хромосомы и встраиваемые в другой локус той же или другой хромосомы. Ретротранспозоны не покидают исходного положения в молекуле ДНК, но могут копироваться, и копии встраиваются,подобно транспозонам, в новый участок. Включаясь в гены или участки около генов, они могут вызывать мутации и изменять их экспрессию.
Геном эукариотов подвергается изменениям и при заражении ДНК- или РНК-содержащими вирусами, которые внедряют свой генетический материал в ДНК клеток хозяина.

2. Яды и специфические ингибиторы мультиферментных комплексов, обеспечивающих процессы транскрипции, трансляции ипосттрансляционной модификации белков

Ингибиторами биосинтеза белков могут быть различные вещества, в том числе антибиотики, токсины, алкалоиды, антиметаболиты (аналоги) структурных единиц нуклеиновых кислот и др. Они широко используются в биохимических исследованиях инструменты для раскрытия механизма отдельных этапов биосинтеза белков, поскольку оказалось, что среди них можно подобрать такие,которые избирательно тормозят специфические фазы белкового синтеза. Антибиотики - вещества, синтезируемые микроорганизмами, плесенью, грибами, высшими растениями, тканями животных в процессе их жизнедеятельности, а также полученные синтетическим путем. Им свойственна бактериостатическое или бактерицидное действие. Антибиотики, которые взаимодействуют с ДНК, нарушают ее матричные функции и подавляютрепликацию или транскрипцию, или оба эти процессы. Противоопухолевые антибиотики практически одинаково взаимодействуют с ДНК как опухолевых, так и нормальных клеток, поскольку они не отличаются избирательностью действия.

3. Дефицит незаменимых аминокислот

Аминокислоты- органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.
Отсутствие или недостаток впродуктах питания одной или нескольких незаменимых аминокислот негативно влияет на общее состояние организма, вызывает негативный азотистый баланс, нарушения синтеза белков, процессов роста и развития. У детей может возникнуть тяжелое заболевание – квашиокор.
Незаменимые аминокислоты применяют для обогащения кормов сельскохозяйственных животных с целью повышении я их...

Преферанская Нина Германовна
Доцент кафедры фармакологии фармфакультета Первого МГМУ им. И.М. Сеченова

Антибиотики оказывают в основном бактериостатическое действие, исключение составляют аминогликозиды, оказывающие бактерицидный эффект и препараты, применяемые в больших дозах. Эти лекарственные средства обладают широким спектром антимикробного действия и часто применяются в клинической практике, особенно они незаменимы в специфической терапии таких редких инфекций, как бартонеллез, бруцеллез, криптоспоридиоз, муковисцидоз, токсоплазмоз, туляремия, туберкулез, сибирская язва, холера, чума и др.

Часть I. Макролиды

Макролиды представляют собой класс антибиотиков, которые содержат в молекуле макроциклическое лактонное кольцо, связанное с углеводными остатками аминосахаров. В зависимости от числа атомов углерода, составляющих кольцо, выделяют 14-членные, 15-членные и 16-членные макролиды. Из всех существующих антибиотиков, макролиды зарекомендовали себя как высокоэффективные и наиболее безопасные химиотерапевтические средства. Макролиды делятся на две группы: природные и полусинтетические.

Антимикробный эффект макролидов обусловлен нарушением синтеза белка на рибосомах микробной клетки. Макролиды обратимо связываются с различными доменами каталитического пептил-трансферазного центра 50S -субъединицы рибосом и ингибируют процессы транслокации и транспептидации пептидов, что приводит к прекращению сборки белковой молекулы и замедляет способность микроорганизмов к делению, размножению. В зависимости от вида микроорганизма и концентрации препарата оказывают дозозависимый эффект, проявляя при этом бактериостатическое действие, в больших дозах и на некоторые штаммы микроорганизмов - бактерицидное. Антимикробный спектр действия весьма близок к группе природных пенициллинов.

Макролиды обладают липофильными свойствами, быстро всасываются в ЖКТ, создают высокие тканевые и внутриклеточные концентрации, распределяясь во многих тканях и секретах, плохо задерживаются во внеклеточных жидкостях, не проникают через ГЭБ. Их действие проявляется в основном на стадии размножения. Они высокоэффективны только в отношении активно делящихся микроорганизмов, поэтому хорошо зарекомендовали себя при лечении острого периода заболевания и малоактивны или практически не оказывают действия на вялотекущие процессы.

Обладают повышенной активностью в отношении грам «+» кокков и внутриклеточных возбудителей (хламидий, микоплазм, легионелл), подавляют развитие грамотрицательных кокков, палочки дифтерии, возбудителей бруцеллеза, амебной дизентерии. На грам «-» микроорганизмы семейства Enterobacteriaceae P . aeruginosa и грам «-» анаэробы резистентны. Псевдомонады и ацинетобактеры обладают природной устойчивостью ко всем макролидам. Резистентность микроорганизмов к этой группе препаратов связана с изменением структуры рецепторов на 50S -субъединицах рибосом, что приводит к нарушению связывания антибиотика с рибосомами. У макролидов, линкозамидов и фениколов связывание с 50S -субъединицей рибосом происходит на различных участках, это обусловливает отсутствие перекрестной резистентности. Особенностью антимикробного действия макролидов является бактериостатическое действие в отношении тех форм бактерий, которые устойчивы к таким широко применяемым группам, как пенициллины, стрептомицины, тетрациклины.

Макролиды применяют при инфекциях нижних дыхательных путей, включая атипичные формы, обострение хронического бронхита и внебольничную пневмонию. Их назначают при инфекциях верхних дыхательных путей (синуситах, отитах, фарингитах, тонзиллитах), инфекциях полости рта, мягких тканей, кожи, инфицированных угрях и урогенитальных инфекциях. Показаниями для их применения является профилактика и лечение микобактериоза, профилактика ревматической лихорадки, эндокардита, с целью эрадикации H . pylori (кларитромицин ). Иммуномодулирующие свойства макролидов используют при панбронхонхиолите (кларитромицин, рокситромицин ) и муковисцидозе (азитромицин ).

Основные побочные эффекты при применении макролидов - желудочно-кишечные нарушения, риск которых не превышает 5-8%. В редких случаях развиваются аллергические реакции 2-3% (кожная сыпь, отечность лица, шеи, стоп, анафилактический шок), реже холестатический гепатит и псевдомембранозный колит. Наименьшая кратность введения макролидов, улучшенные фармакокинетические показатели не требуют коррекции доз при почечной недостаточности и хорошо переносятся больными. Большинство макролидов (особенно эритромицин и кларитромицин) являются мощными ингибиторами цитохрома Р-450 (CYP 3A 4, CYP3A5, CYP3A7, CYP 1A 2), поэтому на фоне их применения нарушается биотрансформация и повышается максимальная концентрация в крови совместно применяемых лекарств. Это особенно важно учитывать при применении Варфарина, Циклоспорина, Теофиллина, Дигоксина, Карбамазепина и др., которые метаболизируются в печени. Их сочетанный прием может вызвать наиболее опасные осложнения (нарушение ритма сердца, удлинение интервала Q -T , развитие ишемии конечностей и гангрены). Не подвергаются окислению цитохромом Р-450 спирамицин и азитромицин. В организме макролиды подвергаются энтерогепатической рециркуляции, экскретируются главным образом с желчью и только 5-10% препарата выводится почками.

Эритромицин (Erytromycinum) продуцируется почвенными актиномицетами (лучистыми грибами), из культуральной жидкости которых и был выделен в 1952 г. Из желудочно-кишечного тракта всасывается хорошо. В кислой среде желудка частично разрушается, поэтому вводить эритромицин следует в таблетках, покрытых кислоторезистентным покрытием, которое растворяется только в кишечнике. Препарат легко проникает в различные ткани, в т.ч. преодолевает плацентарный барьер. В ткани мозга в обычных условиях не поступает. После однократного приема внутрь максимальная концентрация в крови достигается через 2 часа. У эритромицина биодоступность составляет 2-3 часа, поэтому для поддержания терапевтического уровня в крови его следует вводить 4 раза в сутки. Высшие дозы внутрь: разовая - 0,5 г, суточная - 2 г. Выделяется с фекалиями и, частично, с мочой. Эритромицин в таблетках наиболее широко используется для лечения пневмоний, бронхитов различной этиологии, скарлатины, ангины, гнойных отитов, дифтерии, раневых инфекций. Препарат применяют при тяжелом течении инфекционного заболевания, для лечения коклюша, дифтерии. При конъюнктивите новорожденных вводят внутривенно, разовую дозу разводят в 250 мл изотонического раствора натрия хлорида, вводят медленно в течение часа. При гастропарезах эритромицин дозозависимо вызывает стимуляцию моторики желудка, увеличивает амплитуду сокращений привратника и улучшает антрально-дуоденальную координацию. Местно применяют в виде мази и раствора для наружного применения для лечения гнойно-воспалительных заболеваний кожи, инфицированных ран, трофических язв, пролежней и ожогов II -III степени. К эритромицину быстро развивается устойчивость микроорганизмов, препарат малотоксичен и редко вызывает побочные явления. Иногда возникают диспепсические нарушения (тошнота, рвота), аллергические реакции. Значительно снижается биодоступность при приеме эритромицина во время еды или после, т.к. пища уменьшает концентрацию этого антибиотика в крови более чем в 2 раза. Выпускается в тб., покр. обол. 100 и 250 мг; мазь глазная 10 г (в 1 г 10 000 ЕД); мазь для наружного и местного применения 15 мг - 10 тыс. ЕД/г. Суппозитории для детей по 0,05 г и 0,1 г. Порошок для инъекций по 0,05, 0,1 и 0,2 г и гранулы для суспензии по 0,125 г и 0,2 г во флаконах по 5 мл.

Среди причин, вызывающих нарушения синтеза белка, важное мес­то занимают различные виды алиментарной недостаточности (полное, неполное голодание, отсутствие в пище незаменимых аминокислот, на­рушение определенного количественного соотношения между незамени­мыми аминокислотами, поступающими в организм).

Если, например, в тканевом белке триптофан, лизин, валин содержатся в равных соотно­шениях (1:1:1), а с пищевым белком эти аминокислоты поступают в соот­ношении 1:1:0,5, то синтез тканевого белка будет обеспечиваться при этом ровно наполовину. Отсутствие в клетках хотя бы одной (из 20) неза­менимой аминокислоты прекращает синтез белка в целом.

Нарушение скорости синтеза белка может быть обусловлено рас­стройством функции соответствующих генетических структур. Повреж­дение генетического аппарата может быть как наследственным, так и приобретенным, возникшим под влиянием различных мутагенных факторов (ионизирующее излучение, ультрафиолетовые лучи и пр.). На­рушение синтеза белка вызывают некоторые антибиотики. Так, «ошибки» в считывании генетического кода могут возникнуть под влиянием стреп­томицина, неомицина и других антибиотиков. Тетрациклины тормозят присоединение новых аминокислот к растущей полипептидной цепи (об­разование прочных ковалентных связей между ее цепями), препятствуя расщеплению нитей ДНК.

Одной из важных причин, вызывающих нарушение синтеза белка, может быть нарушение регуляции этого процесса. Регуляция интен­сивности и направленности белкового обмена контролируется нервной и эндокринной системами, эффекты которых реализуются путем влияния на различные ферментные системы. Децебрация животных ведет к сни-

жению синтеза белка. Соматотропний гормон, половые гормоны и инсу­лин при определенных условиях стимулируют синтез белка. Наконец, при­чиной его патологии может стать изменение активности ферментных сис­тем клеток, участвующих в синтезе белка.

Результатом действия этих факторов является уменьшение скорос­ти синтеза отдельных белков.

Количественные изменения в синтезе белков могут приводить к изменению соотношения отдельных фракций белков в сыворотке крови - диспротеинемии. Выделяют две формы диспротеинемии: гиперпро- теинемию (увеличение содержания всех или отдельных видов белков) и гипопротеинемию (уменьшение содержания всех или отдельных бел­ков). Так, некоторые заболевания печени (цирроз, гепатит), почек(нефрит, нефроз) сопровождаются уменьшением синтеза альбумина и умень­шением его содержания в сыворотке. Ряд инфекционных заболеваний, сопровождающихся обширными воспалительными процессами, ведет к увеличению синтеза и последующему повышению содержания гамма-гло­булинов в сыворотке. Развитие диспротеинемии сопровождается, как правило, сдвигами в гомеостазе (нарушение онкотического давления, водного баланса). Значительное уменьшение синтеза белков, особенно альбуминов и гамма-глобулинов, ведет к резкому снижению сопротивля­емости организма к инфекции.

При поражении печени и почек, некоторых острых и хронических вос­палительных процессах (ревматизм, инфекционный миокардит, пневмо­ния) возникают качественные изменения в синтезе белков, при этом синтезируются особые белки с измененными свойствами, например С-ре- активный белок. Примерами болезней, вызванных наличием патологичес­ких белков, являются болезни, связанные с присутствием патологическо­го гемоглобина (гемоглобинозы), нарушение свертывания крови при появлении патологических фибриногенов. К необычным белкам крови от­носятся криоглобулины, способные выпадать в осадок при температуре ниже 37° С (системные болезни, цирроз печени).

Похожие статьи